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Taking account of slenderness of many lakes, a hydrodynamic model is developed. 
The three-dimensional differential equations are formulated in a curvilinear CO- 

ordinate system along the ‘long’ axis of the lake. Applying the method of weighted 
residuals and expanding the field variables with shape functions over the cross- 
sections, approximate equations for the fluid motion are derived. The emerging 
equations form a cross-sectionally discretized set of spatially one-dimensional partial 
differential equations in the longitudinal lake direction. At first, these channel equa- 
tions are presented for unspecified fluid properties and arbitrary shape functions, 
leaving applications possible for inviscid or viscous fluids with arbitrary closure 
conditions. The channel equations are subsequently specialized for Cauchy series as 
shape functions. For the free oscillation the simplest channel model is shown to reduce 
to the classical Chrystal equation. A first-order linear channel model is deduced. It 
exhibits the essential features of gravitational oscillations in rotating basins, in that 
it provides wave-type solutions with the characteristics of Kelvin and Poincad waves. 
This paper presents the derivation of the equations. Their application to ideal and 
real basins is deferred to several further papers. 

1. Introduction 
This paper is concerned with the derivation of an approximate system of equations 

for slender fluid bodies using free-surface hydrodynamics on the rotating Earth as the 
illustrating example. This introduction to the theory is complemented by applications 
in two further papers. 

Many relevant theoretical aspects of physical limnology concern the motion of lake 
water due to wind and pressure fluctuations. These are described mathematically by 
the Navier-Stokes equations complemented by boundary and initial conditions. 
Simple models allow construction of analytical solutions to the governing equations ; 
however, most problems, and in particular those for real lakes, need be solved by 
numerical techniques. These lakes are usually considered as three-dimensional fluid 
continua. Frequently one or more dimensions are eliminated by an averaging or 
integration process. Free oscillations of the entire body of the basin are one class of 
motion. They are known as surface or internal seiches depending on whether the free 
surface or the thermocline is referred to and are characterized as gravitational when 
accompanied by substantial surface deflections, and as rotational or topographic when 
dictated by variations in bathymetry and the rotation of the Earth. Here our focus is 
on gravitational motions. 
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The traditional methods of calculating free oscillations are the channel approxi- 
mations, of which the classical example is the Chrystal equation (Chrystal 1904,1905). 
These models only permit a variation in the surface elevation and longitudinal velocity 
along the channel axis, and velocities transverse to the channel axis are neglected. In  
rotating basins, the imposition of Kelvin wave dynamics on the channel solution may 
be employed to construct approximately the positively rotating modes appearing in 
such basins (see e.g. Defant, 1953). 'Even though the imposition of Kelvin wave 
dynamics on the channel solution gives very satisfactory results for the lowest mode, 
its validity for the higher modes breaks down both quantitatively and qualitatively. 
Kelvin wave hypothesis leads to  amphidromic systems, all of which propagate in the 
counterclockwise direction in the northern hemisphere' (Rao & Schwab 1976). Yet 
observations by Mortimer & Fee (1976) in Lakes Michigan and Superior indicate that in 
these basins both positively (counterclockwise) and negatively (clockwise) propagating 
amphidromic systems are possible. Thus, it is not possible to  simulate all slowly 
rotating surface waves that appear in natural basins with the Kelvin wave hypothesis. 
Further, the selection of the axis of the lake is rather arbitrary, and as Hamblin (1972) 
remarks, ' . . . there is an element of subjectivity in prescribing the channel axis which 
can cause error. . . '. 

It is clear then that a satisfactory treatment of seiches in an arbitrary basin requires 
an attack on the two-dimensional (and when including viscosity effects three- 
dimensional) problem. Such models (Hamblin 1972; Rao & Schwab 1976) are based on 
particular forms of the tidal operator; the discretization makes explicit use of the 
two-dimensionality of the region of solution for which the classical channel equations 
break down because the basins are not elongated. On the other hand, some two- 
dimensional models also have disadvantages in that they may not allow a satisfactory 
resolution across the smaller dimension of a slender lake, and may even fail in modelling 
wave propagation in long curved channels (see Rodenhuis 1980). For instance for 
small lakes numerical stability criteria may force us to use finite-difference mesh sizes 
so large as to virtually destroy the advantages of the two-dimensional model over the 
one-dimensional one. And in a bend of a narrow basin the shoreline may be so poorly 
approximated that false reflections prevent a wave from travelling around the bend. 

Here, we develop an extended channel model for curved, elongated rotating basins; 
which not only accounts for the curvature of the axis but also simulates the charac- 
teristic behaviour of waves in rotating basins without excessive computational effort. 
The aim is thereby twofold. Firstly, a systematic, rational procedure is sought by 
which a series of channel models is obtained. For free oscillations the emerging channel 
theory should improve on the classical Chrystal equation, allowing for positive and 
negative amphidromic systems. Secondly, the extended models are regarded as 
approximations by which the spatially two- or three-dimensional equations of fluid 
motion are replaced by a one-dimensional set of equations in order t o  predict the fluid 
motion with reasonable accuracy. Here the minimum eflort is sought that  suflices to 
predict the motion of the original problem with reasonable accuracy. 

Prominent examples of one-dimensional models derived from three-dimensional 
continuous media are the theories of rods and jets (see e.g. Antman 1972; Doekmeci 
1972; Green, Laws & Naghdi 1974; Green, Naghdi & Wenner 1974a,b; Green & 
Naghdi 1976; Naghdi 1979). The methods of derivation are diverse, and authors often 
emphasize the formal connection of the reduced models with theories of Cosserat 
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curves, but the methods can essentially be interpreted as particular applications of the 
principle of weighted residuals (Finlayson 1972). They are seldom regarded as a step 
towards a numerical scheme akin to that of Kantorovich, or the method of lines (Icerr 
1967; Aktas, 1979), although this angle of interpretation opens interesting new insight. 

In  this paper we outline the derivation of the channel equations from the three- 
dimensional field equations and boundary conditions of fluid mechanics of a rotating 
system. The selection of a curvilinear co-ordinate system that has as principal co- 
ordinate an axis of the channel-like lake allows development of such a channel model 
and reduces the ‘element of subjectivity’ in prescribing the channel axis. This major 
axis is complemented by two co-ordinates within the cross-section selected to be 
perpendicular to the major axis. The channel model is derived using the met,hod of 
weighted residuals. The technique is to prescribe the shape of the channel-model 
solution in the cross-sections as truncated sets of functions leaving variation of the 
solution free with respect to time and the longitudinal co-ordinate. The integrals 
appearing in the weighted residual expressions can therefore be performed explicitly 
in the cross-section, so that the three-dimensional partial differential equations are 
transformed to a set of partial differential equations in time and in the longitudinal 
co-ordinate. This cross-sectional integration is not entirely straightforward, however, 
as in the original problem there arise boundary conditions a t  the bottom and free 
surface, which must be taken into account when formally reducing the system from a 
spatially three-dimensional to a one-dimensional one. A hierarchy of models is thus 
established according to the number of shape functions selected to represent each 
variable. In  view of future applications viscous-drag and turbulent-friction effects are 
included in the formulation. Nonlinear terms are kept, in general, but free-surface 
amplitudes are assumed to be small in the sense that cross-sections are constant and 
evaluated at their equilibrium state. This is only a matter of convenience, and the 
assumption can easily be lifted. Equations are then specialized for an inviscid fluid and 
results are discussed for these. In particular, the simplest model reduces to the 
Chrystal equation, and the first-order model reflects already the essential features of 
long gravitational waves. Applications of the method to other physical systems are 
hinted, but the demonstration that ‘it works’ for rotating fluids is deferred to three 
other forthcoming articles (Raggio & Hutter 1982a,b; Hutter & Raggio, 1982). 

2. Governing equations 
We are concerned here with the dynamics of an incompressible fluid with free surface 

in a steady rotating basin. Let IR denote the domain filled by the fluid and aIR its 
boundary consisting of the free surface aS2, and the bottom boundary an,. To describe 
the motion of fluid particles in Q, a right handed plane curvilinear orthogonal co- 
ordinate system is introduced (see figure 1) .  In  a first step the lake axis is selected 
within the undisturbed lake surface and, then, complemented by two other axes, one 
horizontal and the other vertical. The curve parameter on the axis is denoted by s, the 
co-ordinate measured horizontally by n and that on the vertical axis by z, which is 
positive upwards. The selection of the (s,n,z)-system is subjective, but for each 
individual lake the lake axis may suggest itself in a natural fashion. 
In subsequent developments the prescribed lake axis plays a prominent role. Its 

equation x = %(s) and its curvature K(s )  are assumed to be given functions of arc 
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FIGURE 1. Definition of the (8, n, 2)-co-ordinate system. 

length s. Of importance is also the Jacobian of the metric tensor of the orthogonal 
system (8 ,  n, z ) ;  it  is given by 

J(s ,n )  = 1 - K ( s ) n ,  ( 2 . 1 )  

and must be positive if a point in SZ is to be described uniquely. This is the only 
coercive condition that may restrict the location of the axis. 

Balance of mass and momentum are the basic laws in fluid dynamics describing 
physical processes in a purely mechanical model. In the curvilinear coordinate system 
introduced above and for an incompressible liquid these equations assume the com- 
ponent form 

( 2 . 3 ~ )  

Here, p is the density, v velocity, TE Cauchy stress deviator, p pressure and g 
acceleration due to gravity. Furthermore, K' = dK/ds ,  and f = 2 1521 sin q5 is the 
Coriolis parameter, which depends on the rotation of the Earth 1521 and on latitude q5, 
a possible z-component being absorbed in g (see Krauss 1973). It should also be men- 
tioned that the components of v and'TE are the physical components referred to a basis 
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of unit vectors along the (s, n, 2)-directions. A derivation of (2 .2)  and (2 .3 )  from first 
principles is given by Raggio (1981) .  

Equations (2 .2 ) ,  (2 .3 )  must be complemented by phenomenological statements 
regarding extra stress T E  which in turbulent motion can be identified with the 
Reynolds stresses, if, as is usually the case, molecular viscous effects are ignored. 
There are numerous turbulent closure conditions, one using the analogy with the 
molecular viscosity and others using transport equations for the stresses (see Launder & 
Spalding 1972; Bradshaw 1976); at this stage the precise formulation of these pheno- 
menological assumptions is left unspecified since this will not affect the subsequent 
calculations. 

To solve the field equations, boundary and initial conditions must be prescribed. 
As to the former, kinematic and dynamic conditions apply. Let 

A 
\E;(s, n, z, t )  = ((s, n, t )  - z = o on a ~ , ,  
lF’(s,n,z)  = H ( s , n ) - z  = 0, on aa,, 

FEE 

be the equations defining the free and bottom surface. Here and henceforth hats 
indicate functions which are defined on the free surface only. With wind-stresses t:, tg 
and atmospheric pressure pat, we may thus write as kinematic and dynamic conditions 
on an, 

I a t  -+--v1Js+-vn-v2r, = 0, 
at Jas an (2 .5 )  

( 2 . 6 ~ )  

with 

Equation (2 .5 )  expresses the fact that ail,, is material, and (2 .6a-c)  are the three 
components of the continuity of surface traction. 

At the bottom boundary the kinematic condition (2 .4 )  and a viscous sliding law 
imply the relations _ _  

I l aH aH 
J as an 
-- v,+-vn-vz = 0, 

an 
( 2 . 8 ~ )  

in which 
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Here n is the unit exterior normal vector, and R is a friction coefficient, which is not 
necessarily constant, but may be a function of velocity, bed roughness etc. The 
boundary condition (2.8) includes with R = 0 the no-slip condition and automatically 
satisfies the kinematic condition v . n  = 0. R + co necessarily requires TE = 0, so 
a viscous bottom sliding law can consequently only be introduced if the extra stress 
tensor does not identically vanish. A similar remark also holds for wind stress, as can 
be seen from (2.6). Since our ultimate aim is in wind-induced currents (storm surges) 
we shall keep the viscous terms here, even though the first applications of the theory 
will only be on inviscid fluid flow. 
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We close this section by stating initial conditions in the form 

v = v**(s, n, z ) ,  6 = (**(s, n). (2.9) 

The functions v**( ) and [**( ) are not completely arbitrary, as they should conform 
with the balance laws and boundary conditions. For instance, v** must satisfy the 
kinematic bottom boundary condition, and should also satisfy the divergence condition 
div (v**) = 0. A common initial condition satisfying these restrictions is for example 
a start from rest, v** = 0 9 -  (** = 0. 

The above equations comprise a complete formulation of the three-dimensional 
initial-boundary-value problem of the motion of a fluid with free surface in a basin that 
rotates with steady angular velocity. The equations are limited to processes in which 
temperature is a passive quantity, and, strictly speaking, they can only be solved once 
a closure condition for the Reynolds stresses is presented. For an application in 
limnology the third momentum equation is usually further simplified by invoking the 
hydrostatic-pressure assumption. This reduces (2.3 c )  to 

P = P9(&, n, t )  - 2). 

The following developments will be restricted to  this case. 

(2.10) 

3. The method of weighted residuals 
The purpose of a one-dimensional model which replaces the three-dimensional 

continuum is to obtain a computationally more easily accessible description which 
provides better insight into the physical system under consideration. To derive such 
one-dimensional formulations one uses either asymptotic expansions (compare deri- 
vations of the Korteweg-de Vries equation and its variants) or starts from generalized 
(Cosserat) continua or transforms the three-dimensional equations to a weak (integral) 
form. It is probably fair to  say that the latter two methods are embodied in the more 
general principle of weighted residuals (see Finlayson 1972). Here we shall use this 
well-known principle, which mathematically corresponds to  the projection method 
(Kantorovich & Krylov 1958), but its use in our application is novel and thus requires 
a brief exposition of the method. 

The essential idea of the method of weighted residuals is as follows. Let R, = 0 be 
the set of field equat,ions defined over !2 and RaRa = 0 (a = 1,2,  ..., v) the associated 
boundary conditions, of which each holds at the part an, of the total boundary. In the 
context of $2 ,  R,, = 0 stands for (2.2) and (2.3) (written here in vectorial form); 
further, v = 2 with an, = ail,, aa, = an,, and Rana = 0 represents (2.5)-(2.8). (The 
numbers of components in R,, and RaQm need not be the same, and the domains of 
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their definition are different, which explains the use of the subscripts). Now form the 
scalar product of R, = 0 and Rdna = 0 with arbitrary weighting functions 6wn and 
Swana, and integrate the resulting scalars over those volume or surface parts, on which 
the respective equations hold. Upon addition of the resulting expressions one obtains 

as the weak form of the original initial-boundary-value problem. Here we have used 
the 8-symbol as a reminder that the weighting functions are arbitrary; the quantity I 
by itself is not defined, in general, unless the equations are self-adjoint. A solution of 
the boundary-value problem always implies 61 = 0; that the converse is true for 
arbitrary weighting functions follows from a fundamental lemma of the calculus of 
variations. 

Equation (3.1) is the basis for the approximation to deduce the spatially one- 
dimensional model. To this end all weighting functions Sw and each unknown field 
variable (velocity components, surface elevation etc.); say x for brevity, are postulated 
as products of two truncated sets in the form 

N N _.  _. 
x = # i ~ i  = +T.~, 6~ = C @~SW, =+'.SW, 

i=1  i=l 

where the #i and @i generate sets of linearly independent known functions, called 
shape, basis or trial functions, and the xi and Swi constitute sets of unknown (xi) 
and arbitrary (hi) functions. The +- and +-functions are chosen to depend on 
some of the independent variables, and the x and Sw depend on the remainingvariables. 
This amounts to separation of the variables into known sets C#J and + and unknown 
sets x and Sw. To be more specific, 

in which + (and +) describe the distribution of x (or Sw) over cross-sections of the lake. 
Restriction of (3.2) to N = 1 often amounts to the construction of similarity solutions, 
and N (not necessarily = 1) defines the order of the model. The sets + and + may be 
constructed from products of polynomials, or other appropriate functions. In principle 
they could also vary with s without violation of the general developments, but here 
such a dependence will be omitted. Further, one may choose C#J = +, which we will do 
later on; this is again special and corresponds to a Calerkin procedure. 

By introducing the representations (3.3) into (3.1), integrations over R and aRa can 
be split into cross-sectional integrals over the co-ordinates n and z, followed by an 
integration along the axis. Because + and + are known, integrations over n and z can 
be performed explicitly. Structurally, (3.1) thus has the form 

SI = /:(A(.), Sw)ds = 0, (3.4) 

in which ( , ) is a bilinear functional, and integration is along the lake axis from s = s1 
to 5 = s2. Since Sw is arbitrary (3.4) implies (using the lemma of the calculus of 
variations) A(x(s, t ) )  = 0, which is the approximate set of spatially one-dimensional 
equations. In this process of reduction certain volume integrals may be transformed to 
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surface integrals by using Green’s theorem, but physical arguments must suggest 
which of the global representations should be regarded as the correct one. We shall 
examine this difficulty further. 

The discussion above outlines the general procedure that must be followed in the 
method of weighted residuals. All that is needed is to demonstrate its application 
explicitly; the field equations (2 .2 ) ,  ( 2 . 3 )  and boundary conditions (2.5)’ (2 .6 )  and (2 .8 )  
have already been identified. These equations will be multiplied by the weighting 
functions and then integrated over their domains of definition. With the weighting 
functions 6vl, 6A, defined over R;  Sv,, SA, defined over aR,, and 6v3,6h, defined over 
an, we obtain 
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6 

a = l  
2 61, = 0,  (3 .5 )  

with 

( 3 . 6 ~ )  

(3 .6b)  

( 3 . 6 ~ )  

(3 .6d )  

(3 .6e )  

where d V is a volume element in the domain 0, and da a surface element on the surface 
an. Integrations over time from t ,  < t < t,  arise because our physical problem is an 
initial-boundary-value problem. Conceptually, these time integrations are important. 
In actual calculations they do not play a role, however, and will henceforth be omitted. 
Equations ( 3 . 6 a , b )  are the residuals corresponding to the field equations (2 .2 )  and 
(2 .3 ) ;  ( 3 . 6 ~ ’  d )  correspond to the free-surface boundary conditions and (3 .6e ,  f )  to the 
bottom boundary conditions. 

The major goal in 0 4 is to explain how ( 3 . 5 )  and (3 .6 )  are used to derive a spatially 
one-dimensional model of water motion in rotating basins. 

4. Derivation of an approximate channel model for barotropic motions in 
a lake 

With the curvilinear co-ordinate system introduced in 5 2 a preference for the long 
direction of the lake is naturally built into the governing equations, which can now be 
reduced to one-dimensional form by discretizing them in the cross sectional co-ordi- 
nates (n and z of 9 2 ) .  The basis for this reduction is the fact that variations in the long 
direction are more important than the cross-sectional variations suggesting the shape- 
function expansions (3.3), in which the dimensions of + and + are chosen to coincide 
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(same value for N in (3.2)), to yield a determinate system. Although each variable 
could have its own representation (3.3), the ensuing developments are based on the 
more restricted expansions for the velocity components and surface elevation 

(4.1) 

in which + = +(n,z),  4 = &n); +T denoting the transpose of +. The weighting 
functions &us, Sun, Sv, and h introduced in (3.6) are similarly expanded: 

(vs, vn, vz) = +T . ( v s ,  v,, vz), C = @ * 5, 

1 (4.2) 
( 8 ~ ~ 7  SV,, av,, ah,) = +T. (SvS, SV,, 6v,, dh,), 

(Shz, Sh3) = @. (ShzSA3), J 
with + = +(n, z )  and 4 = &(n). 

4.1. Equations of motion 
In this subsection the equations of motion for a lake are presented using the previous 
expansions (4.1) and (4.2) and the principle of weighted residuals introduced in 5 3. 
Calculations are frequently very involved. In order not to sidetrack the main ideas, 
auxiliary calculations and space-filling definitions are appended at the end, or only key 
steps are indicated. 

We begin by noticing that one possible set of weighting functions in (3.5) and (3.6) 
is such that X:=l SI, = 0 reduces to SI, = 0. By way of illustration we make this choice 
and obtain 

in which @ is the exterior product and +,, = a+/an and +,, = a+ faz. (Note that the 
symbolic notation in the various steps of (4.3) is used on different vector spaces. In the 
first line this vector space is the physical space, whereas in the following three lines it is 
the shape-function space. In subsequent developments symbolic notation will pertain 
to shape functions, and variables in physical 3-space will be written in indical notation.) 
Evidently the volume integral has first been split into an integration over the cross- 
section &, followed by an integration over arc length along the axis. Steps two and 
three then consist of a substitution of the expansions (4.1) and (4.2). Clearly, the double 
integrals over the cross-section can be performed explicitly as the integrand functions 
only depend on the bathymetry of the basin, and are known once and for all if the basin 
geometry is prescribed. Hence, in short (4.3) becomes 
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in which the cross-sectional coefficients C ( m ) ,  Cg), C$T) are listed explicitly in appendix 
A and can be treated as known functions of s.t  Invoking the lemma of the calculus of 
variations, since 8Al is arbitrary, implies 
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This is a set of N differential equations in the spatial variable s for the N-vectors 
v,, v,, v,. Clearly, since (4.5) derives from the continuity equation, it may be regarded 
as a set of equations approximating three-dimensional mass balance. Choosing other 
weighting functions one can proceed in this fashion and set Xa81a = 0 to produce 
further equations until a determinate set of differential equations is obtained from 
which v,, v,, v, and 5 can be calculated. However, it is found that a spatially one- 
dimensional theory using (4.5) as the appropriate mass-balance equation is not capable 
of predicting long gravity waves. The difficulty is a subtle one and warrants closer 
attention. 

We may start our explanation by way of analogy with shock waves. Smooth shock- 
free solutions are obtained from differentiable ‘local’ or point forms of the physical- 
balance laws, but shock conditions follow from the integrated ‘global’ forms of these 
laws. It is these integrated laws which describe the physics, and the local laws are 
deduced from them by transforming (through the use of Green’s theorem) boundary 
integrals into volume integrals. It is not difficult to anticipate from this that the correct 
channel equations will be obtained if mass and momentum balances are established 
for cross-sectional averages. These laws are global in the sense that integrations over 
cross-sections are performed and boundary conditions along the bounding bottom and 
the surface lines are incorporated. With regard to the application of the principle of 
weighted residuals this means that the functionals 81, (a = 1,2,  ..., 6) in the basic 
statement (3.6) must be combined and appropriate integrations by parts be performed 
such that the cross-sectionally averaged mass- and momentum-balance laws can be 
identified. 

A simple and familiar example illustrating the above arguments is the derivation of 
the kinematic wave equation. It combines the continuity equation and the kinematic 
boundary conditions a t  the top and bottom surfaces, for plane flow, 

au av 
ax ay 
-+- = 0, 

a t  
at ax 
-+-u-v = 0 at y = t ( x , t ) ,  

aH 
-u+v = 0 a t  y = - H ( z ) ,  ax 

t The sub- and SUperSCriptS in the matrices C (and later in other quantities) have suggestive 
meanings which are evident from a comparison of (4.3) and (4.4). A superscript in parentheses 
will always mean that in the defining equation the Jacobian J of the curvilinear co-ordinate 
system appears as a weighting factor with a power indicated by the superscript. A subscript 
indicates that the integral function appearing in the definition of the respective matrix integral 
involves differentiations with respect to the indicated variable, etc. A hat, see later equations, 
will indicate that shape functions are involved which are only defined on the free surface. We 
have found this, perhaps cumbersome, notation to be the simplest one. 
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by integrating the first between y = - H and y = [, resulting in 

24 1 

which is the global depth-integrated mass balance. If and J ’ u d y  are functionally 

related this equation becomes the kinematic wave equation. 
A cross-sectional average of the balance laws of mass and momentum akin to the 

above kinematic wave equation has to be set in evidence in the application of the 
principle of weighted residuals. The ‘correct’ mass balance statement emerges when 
the combination &Il +&I, + &I, is considered (these terms represent the continuity 
equation and the kinematic boundary conditions). Inspection of (3.5) and (3.6) shows 
that the weighting functions can be selected so that this sum vanishes. This expression 
is now transformed in the same way that the kinematic wave equation in plane flow 
was deduced, but the process is complicated because of the complex geometry of the 
slender body. In  order not to direct the reader from the main ideas, this calculation 
is performed explicitly in appendix B. Here we simply state the result. Accordingly, 
811 + 81, + &I6 = 0 implies 

-- a 

where the coefficient matrices are defined in appendix A.This equation indeed resembles 
the structureof the kinematic wave equation (see Whitham, 1974), but unlike the latter 
it is a statement involving vectors. When variables are expanded in terms of a single 
constant shape function ( N  = 1 in (3.2)] (4.6) becomes identical with the classical 
kinematic wave equation. 

In  much the same way we proceed with the derivation of the global one-dimensional 
version of the momentum equation. The dynamic expression SI, of (3.6b) is combined 
with the corresponding boundary functionals (involving stresses) &I4 and 816, and the 
variational equation, 

using integration by parts is so transformed that the emerging functional can be 
interpreted as the weighted integral of a global momentum balance of a one-dimensional 
channelized system. The detailed calculations are very lengthy and tedious, therefore 
the details will be omitted. The result of (4.7) is 

81,+814+81, = 0, (4.7) 

+ pogCf: 5. + p;(l) - w;(l) + R(%, + J n = 0. (4.9) 

In these expressions quantities written as bold script capital letters are third-order 
tensors in N dimensions; hence 

(&a 0 b)i = 6ijkajbk,  
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with i ,  j, k = 1,2, ..., N. Equation (4.8) corresponds to momentum balance in the 
s-direction, and (4.9) is that in the n-direction. An equation for the third component is 
incorporated in (4.8) and (4.9) as the hydrostatic-pressure assumption (2.10) has been 
used. The unknown field variables are v,, v,, V, and E. The various indexed coefficients 
C, Rand d are known when the bathymetry is prescribed and when the shape functions 
are selected, all of which are defined in appendix A. The quantities carrying asterisks 
are the driving forces due to the wind and the atmospheric pressure gradient. These 
terms are also expressible as cross-sectional integrals, and are known when wind stress 
and atmospheric pressure gradients are prescribed. The terms in curly brackets are 
the accelerations in the longitudinal and transverse directions, those involving the 8 ’ s  
are nonlinear and represent advection, and terms involving f account for the Coriolis 
effects. The first two terms in the second lines comprise all external forces, namely 
pressure gradient due to  surface elevation, atmospheric pressure and wind, and 
together constitute the geostrophic balance. The term involving the matrix R(l) 
accounts for bottom friction. It can consistently only be accounted for in a fluid that 
permits non-trivial viscous or turbulent stresses, of which the effect is collectively 
represented by J, and J,. For completeness these quantities are defined in appendix A. 
For a particular closure model they must be given in terms of the independent field 
variables. 

Equations (4.6), (4.8) and (4.9) do not yet form a complete determinate system of 
equations. A further equation is needed. This equation can again be deduced from (3.5) 
and the condition to arrive at this equation is SI, = 0, implying that 
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(4.10) 

or in view of the definitions in appendix A, 

H$o’~s+Hf’~,-H(’)~,  = 0. (4.11) 

I n  the first line of (4.10), (2.4) is used together with the component form of the gradient 
operator and with the definition of 1 ,  ( 2 .8e ) .  In  the second line (B 1)  of appendix €3 is 
employed to transform the integral over the bottom surface into an integral along the 
s-axis and the transverse direction, B+ and B- denoting the values of n at the positive 
and negative shorelines. Equation (4.11) is an algebraic equation relating v,, v, and v,, 
and may be regarded as a prediction equation for v, when v, and v, are prescribed. 

To summarize, (4.6), (4.8), (4.9) and (4.11) comprise a system of four vectorial 
equations for t’he four unknown N-vectors vs, v,, v,, 5. They are analogous to the basic 
equations (2.2), (2.3), (2.5), (2.6) and (2.8) but unlike these, they represent the global 
behaviour of the motion as a consequence of the smoothing or averaging process over 
the cross-sections of the lake achieved by expanding the variables in the weighted 
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A 

n = B - 9  0 ti = B+ 

Deformed surface 

E D 

C A 
b n  

Undeformed surface 

A .  C mark shorelines 

FIQURE 2. Idealized section. 

residual expressions. Equation (4.6) is the analogue of the continuity equation in which 
the kinematic boundary conditions at the free and at the bot,tom surfaces are built in. 
Equation (4.1 1) is the global form of the bottom boundary condition, expressing the 
tangency of the flow at the bottom. The remaining two equations represent the two 
horizontal components of the momentum equations in which external driving forces 
are incorporated. It should finally be mentioned that with the definitions listed in 
appendix A the validity of the equations is restricted to small elevations of the free 
surface. In  fact, it  is assumed that shorelines do not change under motion. This amounts 
in figure 2 to the identification of the points A with E and C with D. 

The spatially one-dimensional differential equations for the field variables v,, v,, v, 
and 5 must be complemented by closure conditions relating the macroscopic stress 
components with the variables v,, v,, v, and by boundary conditions. These are partly 
interrelated, because the closure condition determines the order of the differential 
equation. For an inviscid fluid model with vanishing viscous stress (4.6), (4.8), (4.9) 
and (4.1 1 )  are of first order in v,, v, (and vz, which can be regarded as eliminated from 
(4.11)). Hence, using N shape functions for the variables, 3N boundary conditions 
must be prescribed. From (4.9) it is seen that the term involving av,/as only arises in 
a formulation accounting for convective acceleration terms. Hence the number of 
boundary conditions depends on whether the term &(0)av,/as @ v, is kept or not. If it 
is not, then 2 N  boundary conditions suffice; one may then require no flow through the 
end cross-sections. Hence the s-component of the physical velocity must vanish, which 
implies v, = 0 at s = so and s = s,, where so and s, signify the beginning and the end 
of the channel axis. When all connective terms are kept, N further conditions must be 
added. 

Finally, to complete the initial-value problem, initial conditions for vs, v,, v, and 
5 must be prescribed. 

4.2. Cauchy-series expansion as an example for the shape function 

Explicit model equations hinge on the particular selection of the as-yet unspecified 
shape functions + and +. Numerical or physical considerations may guide us in the 
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selection criteria. Simple powers, the so-called Cauchy series expansions, are such 
neutral representations, for which (index notation is now more appropriate) 

G .  Raggio and K .  Htctter 

k = O k = O  k=O 

Such expansions though restricted to M = N = 1,  are used in the theory of rods and 
jets (Green, Laws & Naghdi 1974; Green, Naghdi & Wenner 1974a, b ;  Green & Naghdi 
1976; Naghdi 1978). For analytic fields, (4.12) are Taylor-series expansions about the 
lake axis, an interpretation which will be corroborated for problems treated in Raggio & 
Hutter (1982a), but under usual circumstances the functions x ( ~ . * )  are independent. 
For a Galerkin procedure the same expansions apply for the weighting functions. 

The application of the principle of weighted residuals results in differential equations 
for the quantities that are indexed in (4.12) by the superscripts k and 1. The global form 
of the continuity equation, bottom boundary condition and global momentum 
equations can be derived as indicated above; they read 

+ c[f)+p+i,l+qtj) [(k+ 1 )  vLk+lJ)vg,q) + ( I +  1) vp+1)vp’Q)]  +fC,($++i,z+j)v~kJ) 

+pog(k+ 1 )  CIRi , j , c (k+’)+~~(( : l j )  -~z((l!j) + R l ~ ~ ; ? i , z + n v ~ ” ’ + J ~ , j )  = 0. (4.16) 

In these equations r and s are free positive integers such that for every particular 
value of r and s an equation emerges. Furthermore, summation over doubly repeated 
superscripts is understood to extend in the first index from 0 to  N and in the second 
index from 0 to M .  As before the coefficients are cross-sectional integrals of geo- 
metrical quantities, terms carrying an asterisk are known external driving forces and 
the J s  are due to internal friction. The definitions of these quantities in terms of cross- 
sectional integrals are given in appendix A. The balance law of mass agrees formally 
with the kinematic wave equation, and the basal boundary condition reduces, as 
before, to an algebraic statement relating the velocity components. The longitudinal 
[(4.15) and transverse (4. is)] momentum equations are written such that the various 
terms become readily identifiable. The first two lines involve the local, convective and 
Coriolis acceleration terms. In  the third lines the external driving forces appear. These 
are pressure gradients (due to surface elevation and atmospheric pressure), wind 
forces and bottom friction. 
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5. Further simplifications - special models 
Additional simplifications and preliminary calculations (presented in detail by 

Raggio & Hutter 1982a, b;  Hutter & Raggio 1982) regarding gravitational waves in 
rotating basins of inviscid fluids are now introduced. Free oscillations of a zeroth-order 
model are shown to reduce to the Chrystal equation, thus elucidating the assumptions 
behind and the limitations of this classical equation. A first-order model with field 
variables expanded in terms of two shape functions is already general enough to 
predict waves correctly in rotating basins, for it replaces correctly the Kelvin wave- 
dynamics approach ( discussedin $ 1  andvalid (at most) for the few lowest-order modes) 
and provides a channel model consistently derived from basic physical laws that 
reflects the properties of gravitational modes in rotating systems. 

For the simplest model the expansions (3.2) are restricted to one constant term 
4 = $ = 1 representing a mean value over the cross-section. Governing equations are 
(4.6), (4.8), (4.9) and (4.11). However, the transverse momentum equation, (4.8), is not 
needed when longitudinal motions are considered, and the bottom boundary condition 
(4.1 1) is merely a prediction equation for the vertical velocity component. Hence, only 
(4.6) and (4.8) are relevant. Restricting attention to free motion (and therefore omitting 
all terms with an asterisk), ignoring Coriolis forces, convective acceleration and 
frictional resistence, the continuity equation (4.6) and the longitudinal momentum 
equation (4.8) reduce to 

where vector notation has been dropped and the coefficients Z(l) and C(i) are defined as 

00) = SS, dn dx = cross-sectional area, 

C(1) = /lQ J dn dx = cross-sectional area weighted with Jacobian, 

Z(1) = J - J dn = channel width weighted with Jacobian. 
R- 

These contain the curvature of the lake axis (through J ) .  The appearance of the 
Jacobian J o f  the curvilinear co-ordinate system as weighting factor of these integrals 
eliminates the element of subjectivity in selecting the channel axis that was mentioned 
in 3 1. This is because different selections of the lake axis yield different values for these 
coefficients, thus automatically adjusting the equations accordingly. 

If the channel axis is straight, C(0) and C(l) equal the cross-sectional area and Z(1) 

equals the width B of the channel, which may be functions of the coordinate s. This is 
exactly the situation analysed by Chrystal. Equations (5.1) therefore generalize the 
Chrystal equation to include curved basins. In fact, on introducing the transformations 

ii = C%,, s = J; Z(l)(() d ( ,  

the equation (5.1) transform to 
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identical with Chrystal’s original equation, in which the curvature was neglected. Its 
advantage is that the element of subjectivity in selecting the channel axis is eliminated, 
for the value of the coefficient u(s) is accordingly adjusted by the Jacobian. For further 
details see Raggio & Hutter (1982b). 

The above analysis of the zeroth-order model brings out very clearly the conditions 
for which an equation with the same structure as the Chrystal equation is obtained: 
rotation is ignored and shape functions are independent of the cross-sectional 
co-ordinates. 

A demonstration of the inclusion of the Chrystal equation as a very special case of 
the general model deduced in $ 4  is a useful check on the equations. However, zeroth- 
order models are sometimes too crude, as they ignore variation of the velocities and 
surface elevation across the channel width. Extension to a first- or higher-order model 
allows incorporation of transverse variations of the field variables. When convective 
acceleration terms and frictional resistance are ignored the resulting equations are 
then appropriate for small-amplitude inviscid water motions in shallow, narrow, 
rotating basins, and solutions for simple geometries can be compared with those 
obtained from the classical (two-dimensional) tidal equations. This serves as a demon- 
stration of the usefulness of the model. The variables in the tidal equations are inde- 
pendent of the vertical co-ordinate; this same independence is imposed in the channel 
model. In  (4.12) we therefore set M = 0, N = 1 for all variables, choose + = 9 
(Galerkin) and call the emerging model first-order in all variables. Six variables occur, 
namely [ to),  vL0.O), w:*O), g(l), w:l*O) and v(,1*O), and six equations can be deduced from 
(4.6), (4.8) and (4.9) ((4.11) being superfluous as a prediction equation for v,). Omitting 
the second index in vil,O) etc., as it plays no role, and introducing the vector 
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y = ([‘O’, vp’, u p ,  p, w p ,  u p ) ,  

the equations mav be written as 

where 

A( = 

(5.4) 

(5.5) 

. (5.6) 

In  this matrix, in order to simplify notation we used Czi for C[:!o, and Zii for Z{flo,. The 
first and fourth row are continuity statements, the second and fifth row describe 
momentum balance in the longitudinal direction and the third and sixth row express 
momentum balance in the transverse direction. The order of the rows and columns of 



Extended channel model for elongated lakes. Part 1 247 

the operator A have been selected such that as one deletes rows and columns from the 
lower right of A, other channel models which are zeroth-order in some and first-order 
in othervariables, areobtained. Thus a hierarchy of models with decreasing complexity 
may be deduced. For instance the upper left 2 x 2 matrix corresponds to the zeroth- 
order model discussed above; the next extension to the 3 x 3 matrix would be a full 
zeroth-order model, but it is meaningless because there is no transverse pressure 
gradient produced by transverse variation of surface elevation, which does not occur 
(such a variation is necessary to obtain geostrophic balance). The model corresponding 
to the upper left 4 x 4 matrix is first-order in the surface elevation but zeroth-order in 
the velocities. This model would be the simplest version for which the effect of the 
rotating basin is reasonably accounted for. The remaining 5 x 5 and 6 x 6 models also 
include transverse variations in the velocity field. Clearly, in a model involving first- 
order terms the unidirectional zeroth-order motion is coupled with the remaining 
equations describing transverse variation of the field variables. A decoupling can only 
be achieved if all entries to the right of column two in rows one and two are zero. Non- 
dimensionalizing (5.5) with (5.6) by introducing appropriate scales shows that coupling 
results from, in general, three separate causes. One is due to the Coriolis parameter, the 
second is due to curvature along the channel axis and a third can be traced to ‘asym- 
metry’ of the cross-sections. Equations (5.5) and (5.6) have been specialized for a 
rectangular and a ring-shaped basin with constant depth by Raggio & Hutter ( 1 9 8 2 ~ )  
and Hutter & Raggio (1982). 

For details of these calculations the reader is referred to these papers but as a matter 
of foresight we mention that (4.5) and (4.6) allow the prediction of oscillations with 
transverse structure, of Kelvin, Poincart! and inertial waves in rectangular basins of 
constant depth. Moreover, the reflection of a Kelvin wave propagating along one side 
of a half-open rectangular gulf and propagating in the opposite direction along the 
other side of the gulf (Taylor 1920) is approximately, but physically correctly and more 
transparently, predicted. That these phenomena, including those in polar co-ordinates 
(ring-shaped basins) which were studied with the full equations by Kelvin (1879); 
Lamb (1932) and Howard (1960), are correctly predicted by the equations is a good 
indication of their suitability, at least as far as first-class modes are concerned. 

For the detailed presentation of this proof, including an application to a real basin, 
see Raggio & Hutter (1982a, b )  and Hutter & Raggio (1982). 

6. Summary and concluding remarks 
For a thermally unstratified channel-like lake a spatially one-dimensional set of 

equations is derived that is suitable to describe the water motion in curved elongated 
enclosed basins. The equations are derived from the three-dimensional equations, 
formulated in a curvilinear co-ordinate system with one axis along the channel-like 
lake, by using the weighted residual technique, and the physically three-dimensional 
problem endowed with two-dimensional boundary conditions was transformed to a 
one-dimensional two-point boundary -value problem. Field variables were approxi- 
mated by shape-function expansions, and the number of selected shape functions 
defined the order of the channel model. 

The zeroth-order model (with one shape function) is a rational generalization of the 
Chrystal equation, in which the effects of the locationand curvatureof thelakeaxisare 
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incorporated. This was not possible with the Chrystal theory, and thus an element of 
subjectivity in the selection of the lake axis is removed by our formulation. The first- 
order model and all higher-order models are appropriate for surface waves in rotating 
basins in that they reproduce qualitatively correctly the Kelvin and Poincare wave 
structure and also allow the prediction of positively and negatively rotating amphi- 
dromic systems. These results are only discussed briefly as further details are t o  be 
publishedlater (Raggio & Hutter 1982a, b ;  Raggio 1982; Hutter & Raggio 1982). They 
demonstrate, however, that this procedure for obtaining model equations for water 
motions in elongated basins is of value and might be pursued in other studies of slender 
body hydrodynamics. Free-surface rotating fluid-flow served as a demonstration ‘that 
the method works’. An obvious extension would be the analysis of internal waves and 
corresponding large-amplitude thermocline motion. The reader who is familiar with 
the serious difficulties one encounters when trying to approximate the lake geometry 
in finite-difference studies of two-layer internal-wave studies in narrow elongated 
basins (see Bauerle 1981) will undoubtedly realize that our approach is particularly 
suitable for such situations, since variations of the basin geometry are easily taken 
into account. To a certain extent this is also true for large amplitude internal waves 
which have been studied by Long (1 956) and Benjamin (1966) for a fluid with constant 
and infinite depth. The resulting equations often conform with observations (see e.g. 
Osborne & Burch (1980), who use the Korteweg-de Vries (1895) equation), but pre- 
liminary examination of Lake of Zurich data (Mortimer 1980) suggests that large- 
amplitude internal waves in narrow basins may be bathymetry-dependent. 

Further problems that might profit from a channel approach are for example an 
analysis including friction and turbulence effects to predict circulation patterns. 
Furthermore, a similar approach expanding field variables could be used in diffusion 
and advection problems of pollutants, or by expanding the field variables in the 
horizontal plane to  describe seasonal processes, e.g. thermocline evolution. 
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Appendix A 
I n  this appendix we list the definitions of the cross-sectional coefficient.s, load and 

stress resultants that  need be known in order that the dynamical equations of 3 4 are 
completely known. Q denotes the cross-section of the lake, generally in its deformed 
configuration, but in our small-deflection approximation i t  may be chosen as the 
undeformed cross-sectional area. H(s ,  n)  denotes the depth function z = H(s ,  n ) ,  and 
n = B* are the transverse co-ordinates of the shorelines (see figure 2). Commas denote 
partial derivatives, and shape functions carrying a hat are functions of n only. 
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Cross-sectional coegicients 

These quantities are purely geometric. Analogously, the macroscopic bottom-friction 
coegicient is mainly a function of the geometry of the basin: 

where l,(s,n) is defined in (2.8). 

Load resultants 

Let t,* (a  = s, n) be the wind stress components and pzt the atmospheric pressure. We 
then define the macroscopic wind load and macroscopic atmospheric pressurc gradients 
as follows: 
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Stress resultants 
These arise only when internal friction is accounted for. The two quantities J,, J,, 
arising in equations (4.8) and (4.9) have the form 

and the stress resultants are of two types, namely the macroscopic turbulent surface 
pressure 

and the macroscopic stress resultants 

= /IQ" as Jm+T$ d n  dz. (A 6 )  

When Cauchy-series expansions (4.13) are used there are fewer cross-sectional 
coeficients, namely 

The atmospheric pressure and wind-stress terms are 
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with 

( k ,  1 = 1,2,3)  I B +  

pzi , i)  = lB- niHj(s, n) (TkE,nkn,) dn, 

da = I(dall = Jl  dn ds = da‘ ds, 

aF 2 1 aF 

25 1 

r n  

(j = 1,2,  ..., M )  J 
Appendix B 

Global continuity equation with incorporated kinematic boundary conditions 
In this appendix we derive the global form of the continuity equation which expresses 
mass balance in a one-dimensional form. To this end the following preliminary calcu- 
lations are needed. 

Let F(s,  n, z, t )  = 0 be the equation defining the boundary aB of the domain Q (see 
(2.4)), and-let da be the surface element perpendicular to aR. Elementary vector 
calculus and differential geometry then shows that in the (6, n, 2)-co-ordinate system 

I 
dnds = -(1,0,O)dalds = n,.da,, 

Here da,is the algebraic surface element of the projection of the mantle element da into 
the cross-sectional plane (see figure 3), n, and n, are unit vectors along the negative 
s-direction and perpendicular to the cross-sectional periphery but within the cross- 
sectional plane. Thus da, = da; Jds,  with da; = (1 + (aF/an)2)t, is the aIgebraic area 
element projected on a cylindrical surface that is parallel to s and sweeps out the 
periphery of the cross-section. Also, depending on the choice of the surfaces (2.4),we 
write 1 as lH and lE = 1 + O ( t 2 ) ,  respectively, consistently ignoring O(t2) terms. This 
unimportant approximation has been introduced as a matter of convenience, it implies 
that the boundary changes A E  and CD in figure 2 are ignored. 

We also need the following formulae: 

Q denotes the cross-section and aQ its periphery 
9 FLY I21 
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Generator parallel to s-axis 
\ 

FIGURE 3. Channel-like element of length ds with surfaoe element da on its mantle surface. 
Projections of this element into the cross-section and onto the cylindrical surface are shown by 
light dashed areas. 

With these preliminary calculations we are now in the position to derive a weak 
statement of the mass-balance equation. We start by writing BIl in (3.5) a5 

+-+>--v, 
lav,  awn av K 

div v Sh dv = /Io BAT ( / j Q  + (- J - as an az J 

= / ' B A . (  so / / * + ~ d n , + / / Q + ~ J ~ n d ~ + ~ ~ Q + ~ J d n ~ z - ~  as an /jQ +vndndz 1 ds 

The first three innermost cross-sectional integrals can be transformed with the aid of 
(B 2) so that (B 3) may be written as 

(B 3) 

ah. ([ (SS, +us dndz) - fa, + v , d 4 ]  

+ [ $ +Jv,nl2daf -/IQ* an Jv,  d n  dz + K / I Q  +v, dn dz] 

+ [ $ + Jv,n18 du; -/IQ $ Jv, dn dz] - ./IQ +v, dn dz) ds; 

aQ 

(B 4) 
a 9  

or, after rearranging terms, 

div v Sh dv = &A. ( - $ +us dui + $ Jva n,a duf + f ( /I +v.dn dz) 
dQ a* Q 

(B 5 )  
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in which summation over Greek indices is understood. To eliminate the contour 
integrals, consider the weighted residual expresses S13 and 81, for the kinematic 
boundary conditions (3.6c, e). Set 8h3 = 8h2, which is permissible, and form 
813 + 815 = 0 ;  this yields 

The last identity follows, since grad F/l(grad FII is the inward unit normal (see (2.4)). 
Splitting the surface element da into the two perpendicular surface elements da, and 
da, gives 

or, after expansion of the weighting function 8A2, 

= 6hr. ($ tjJ [grad F I -l- aF da' + f8n +v,du; - f +Jvpnz,&] ds. (B 7) 

an at an 

When the expressions (B 5) and (B 7) are added together it is seen that the contour 
integrals cancel, so that 

implies 
SIl + 813 + 815 = 0 

or since 8h is arbitrary, and in view of the definitions in appendix A 

This is the continuity equation we were looking for. Equation (B 8) is given in the main 
text as equation (4.6). 

9-2 



254 G. Raggio and K .  Hutter 

R E F E R E N C E S  

AKTAS, Z. A. 1979 On the application of the method of lines. In Applied Numerical Modelling. 

ANTMAN, S. S. 1972 The theory of rods. In Handbuch der Physik, vol. VIa/2 (ed. C. Truesdell), 

BAUERLE, E. 1981 Die Eigenschwingungen abgeschlossener, zweigeschichteter Wasserbecken 

BENJAMIN, T. B. 1966 Internal waves of finite amplitude and permanent form. J. Fluid Mech. 

BRADSRAW, P. (ed.) 1976 TurbuZence. Springer. 
CHRYSTAL, G. 1904 Some results in the mathematical theory of seiches. Proc. R. SOC. Edin. 25, 

CHRYSTAL, G. 1905 Some further results in the mathematical theory of seiches. Proc. R. SOC. 
Edin. 25, 637-647. 

DEFANT, F. 1953 Theorie der Corioliskraft. Arch. Met. GeyrJhys. Biokl. (A) 6 ,  218-241. 
DOEKMECI, C. M. 1972 A general theory of elastic beams. Int. J. Solids & Stmture8,8, 1205- 

FINLAYSON, B. A. 1972 The Method of Weighted Residuals a d  Variational Principles. Academic. 
GREEN, A. E., LAWS, N. & NAGHDI, P. M. 1974 On the theory of water waves. Proc. R .  SOC. 

GREEN, A. E. & NAGHDI, P. M. 1976 Directed fluid sheets. Proc. R. SOC. Lond. A 347,447-473. 
GREEN, A. E., NAGHDI, P. M. & WENNER, L. M. 1974a On the theory of rods. I. Derivation 

GREEN, A. E., NAUHDI, P. M. & WENNER, L. M. 1974b On the theory of rods. 11. Developments 

HAMBLIN, P. F. 1972 Some free oscillations of a rotating natural basin. Ph.D. thesis, Univ. of 

HOWARD, L. N. 1960 Lectures on fluid dynamics. In Notes on the 1960 Summer Study Propam in 

HUTTER, K. & RAGCIO, G. 1982 A Chrystal-model describing gravitational barotropic motion in 

KANTOROVICH, L. W. & KRYLOV, W. I. 1958 Approzimte Methods of Higher Analysis. 

KELVIN, LORD 1879 On gravitational oscillations of rotating water. Proc. R. SOC. Edin. 10, 

KERR, A. D. 1967 An application of the extended Kantorovich method to eigenvalue problems. 

KORTEWEC, D. J. I% DE VRIES, G. 1895 On the change of form of long waves advancing in a 

KRAUSS, W. 1973 Methods and Results of Theoretical Oceanography, Part I ,  Dynamics of the 

LAMB, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press. 
LAUNDER, B. E. & STALDINC, D. B. 1972 Mathematical Models of Turbulence. Academic. 
LONG, R. R. 1956 Solitary waves in one- and two-fluid systems. Tellw 8,  460-476. 
MORTIMER, C. H. 1980 A preliminary examination of temperature, current and wind records 

obtained during August and September 1978 in Lake Zurich by the Versuchsanstalt fur 
Waaserbau, Zurich (unpublished report). 

MORTIMER, C. H. & FEE, E. J. 1976 Free surface oscillations and tides of Lakes Michigan and 
Superior. Phil. Trans. R. Soc. Lond. A 281, 1-61. 

NACHDI, P. M. 1979 Fluid jets and fluid sheets: a direct formulation. In  Proc. 12th Symp. on 
Naval Hydrodynamics, June 1978, pp. 500- 515. National Academy of Sciences, Wash. D. C. 

OSBORNE, A. R. & BURCH, T. L. 1980 Internal solitons in the Audeman Sea. Science, 208, 

Proc. 2nd Int. Conj., Sept. 1978, Madrid (ed. E. Alarcon & C. A. Brebbia). Pentech. 

pp. 641-703. Springer. 

bei variabler Bodentopographie. Dissertation, Universitat Kiel. 

25, 241-270. 

328-337. 

1222. 

LO&. A 338, 43-55. 

from the three-dimensional equations. Proc. R. Soc. Lond. A 337, 451-83. 

by direct approach. Proc. R. Soc. Lond. A 337, 485-507. 

Washington, Seattle. 

Geophysical Fluid Dynamics. Woods Hole, Mass. (ed. E. A. Spiegel), vol. 1. 

elongated lakes. Arch. Met. Geophys. Biokl. (to appear). 

Interscience. 

92-100. 

New York Univ., N . Y . ,  Dept of Aeronautics and Astronautics Rep. AD671529. 

rectangular canal and a new type of long stationary waves. Phil. Mag. 39, 422-443. 

Homogeneous and Quasihomogeneow Ocean. Berlin : Gebrueder Borntraeger. 

451-460. 



Extended channel model for elongated lakes. Part 1 255 

PLATEMAN, G. W. 1972 Two dimensional free oscillations in natural basins. J. Phys. Oceunog. 2 ,  

POINCAR& H. 1910 Lepns de Me'canique Ce'leste 3, Theorie de Marees. Gauthier-Villam. 
RAGGIO, G. 1981 A channel model for a curved elongated homogeneous lake. Mitteilung Nr 49 

der Ver8uchsanstalt fur Wasserbau, Hydrologie und GlaziolJgie, ETH Ziirich. 
RAGGIO, G. 1982 On the Kantorovich technique applied to the tidal equations in elongated 

lakes. Submitted to J. Comp. Phys. 
RAGGIO, G. & HUTTER, K. 1982a An extended channel model for the prediction of motion in 

elongated homogeneous lakes. Part 2. First-order model applied to ideal geometry: 
rectangular hasins with flat bottom. J. Fluid Mech. 121, 257-281. 

RAGGIO, G. & HUTTER, K. 19826 An extended channel model for the prediction of motion in 
elongated homogeneous lakes. Part 3. Free oscillations in natural basins. J. Fluid Mech. 
121, 283-299. 

RAO, D. B. & SCHWAB, D. J. 1976 Two dimensional normal modes in arbitrary enclosed basins 
on a rotating earth: application to lakes Ontario and Superior. Phil. Trans. R .  SOC. Lond. A 

RODENHUIS, G. S. 1980 Lecture i n  Int. Colloq. on Finite Element Methods in  Non-Linear 
Mechanics, Chatou (preprint). 

TAYLOR, G. I. 1920 Tidal oscillations in gulfs and rectangular besins. Proc. Lond. Math. SOC. (2) 
20, 148-181. 

WHITHAM, G .  B. 1974 Linear and Non-Linear Waves. Wiley. 

117-138. 

281, 63-96. 


